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Use of Frequency-Derivative Information

to Compute EM-Scattering from Multiple

Perfectly Conducting and Dielectric

Cylinders of Arbitrary Cross-Section

over a Frequency Band

by Xiaopu Yang

Ercument Arvas

I. Introduction

The use of frequency-derivative information incorporated

with model-based parameter estimation (MBPE) to obtain

electromagnetic response of an antenna, propagation path, or a

scatterer over a spectrum of frequencies has been studied by a

few researchers [1]. In this report, we present some

interesting results obtained when the theory is applied to E-

field solution of TM-Scattering from multiple perfectly

conducting and I:sqy dielectric cylinders of arbitrary cross-

section.



The moment method solution of above mentioned problem has

been formulated in [2]. When the solution n-'er a frequency band

are required, the method used most often is the one that finds

the solution at a set of discrete frequencies, and then

interpolates them over the frequency band. The cost of

computation for this conventional method can be very high when

the number of discrete frequencies is high as it is usually the

case to obtain esthetic appearance of low-order interpolatory

curve. In contrast, MBPE approach exploits the underlying

physics of the phenomenon being modeled so that unnecessary

computation is avoided. Using frequency-derivative information

further reduces the cost of ccmputation since as far as

determination of model coefficients is concerned, frequency-

derivative samples bear the same amount of information as

frequency samples, but the former are much easier to obtain.

Moreover, as demonstrated by numerical results presented in

this report, using frequency-derivative information has other

advantages, such as better local approximation and easier

implementation.

II. Model-Based Parameter Estimation

A. A Rational Function Representation
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The MBPE approach utilizes the mathematical property that

the frequency response is well approximated by a rational

function of form

F(s) = N(s)/D(s) (I)
P Q

[ 1: Nisi]/[ Disi1],
i=O i=O

which in turn is originated from the Singularity-Expansion

Method (3] in using a pole series in complex frequency s=a+jw

to model the frequency response, i.e.

M N
F(s)= Fp(s)+Fnp(s) = . Ra/(s-sa) + 1 CASP (2)

a=I P=-L

where Fnp(s) accounts for the nonpole portion of F(s), and in

Fp(s) the parameters Ra and sa are the residues and

corresponding poles. While the number of poles is theoretically

infinite to cover the entire frequency band, quite often an

approximation to F(s) over a limited frequency band is of

interest so that the number of poles used in the model is

small, and problem of ill conditioning can be avoided. More

models can be used to cover a wider frequency band. In our

results, surface currents defined in the method of moments are

modeled by a rational function of frequency. For simplicity,

unless we mention otherwise, the current is modeled by
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P
I(S) - l Ra /(s-8a)+Co, (3)

ct-i

which is equivalent to

I(s) = N(s)/D(s)
P P

= [I NlS i ] / [I Disli, (4)
i=O i=O

in which there are 2P+l coefficients Ni's and DI's to be

determined (Do=l).

B. Computing Model Coefficients Using Frequency-Derivative

Samples

The coefficients Ni's and Di's of Eq. (4) can be found when

frequency-derivative samples at some frequency (s=so=jwo) are

available, where w0 is in the frequency band of interest.

Starting with Eq. (4) and differentiating t times with respect

to s, there results the following

I (s)D(s)=N(s)

I' (s)D(s)+I(s)D' (s)=N' (s)

I" (s)D(s)+2I' (s)D' (s)+I(s)D" (s)=N"(s) (5)
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I(t) (s)D(s)+tI(t-1)Dj'(s)+...+Ct,t-mI(m) (s)D(t-m)+

+ .. +I (s) D(t) (s) =N (t) (s)

where Cr, = r!/[s!(r-s)!] is the binomial coefficient. The

system of t+l equations in Eq. (5) provides the information from

which the model coefficients can be found if t+l 2P+l. With no

loss of generality, Eq. (5) can be simplified by setting so=O

with s representing the frequency variation about so. We then

obtain the following matrix representation for the unknown

coefficients

1 0 ... 0 0 0 ... 0 No 10
0 1 . •0 -Io 0 ... 0 N1. 11

0 0 ... 0 -I1  -I 0  ... 0 N 2  12

0 0 ... 1 -Ip_ 1  -IP-2...-I 0  Np Ip
0 0 ... 0 -Ip -IP-1...-I 1  D = Ip+ 1  (6)

0 ... 0 -Ip+ 1 ... 12 D 2  IP+2

0 ... 0 -12P-1 ... -Ip Dp 12P

where Im = (1/m!)I(m) (So).

C. Getting Frequency-Derivative Information from more than one

Points.

For purpose of comparison, numerical results are also

presented of method using frequency-derivative information from

more than one frequency points. Specifically, in two points
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frequency derivacive method, frequency samples and frequency

derivative samples at So±S are used to find model coefficients.

And in three points frequency derivative method, the

informations are taken at so and So±S.

By following the concept in Sec II.B, we can obtain

similar matrix equations for the model coefficients. For

example, when frequency samples up to the second order

derivatives at two points are used, the matrix equation which

determines coefficients in model

I(s) = (No+Nls+N2 s2 )/(l+Dls+D 2s2 +D3s 3 ) (7)

is

I -s s 2 I (-S)S -lo - )2 I o (-s)s 3  No  FIo(-S)

0 1 -2s I,(-s) s - -I ( - s ) s 2 + 1(-s)s 3 - N2  12(-s)-I o (-s) +21 0 (-s)s -3Io (-s)s 2

0 0 1 12(-S)s- -1 2 ( - S ) S 2 + 12 (-s)s 3 -  N2 12(-S)
-II (-s) +2I (-s)s- - 3 I,(-s)s 2 +

-Io (-S) +31o(-s)s

1 s s 2  -Io(s)s -Io(S)S 2  -I 0 (s ) s
3  D1  I O ( s )  (8)

0 1 2s -I l ( s ) s - -Il (s)s2- -I l (s)s 3 - D2 I l ( s )
-Io (s) -21 0 (s)s -3Io0(s)s 2

0 0 1 -1 2 (s)s- -12(S)S s 12 (S) S 3 -  D3  12 (S)
L-I 1 (S) -2I 1,(s)s- -3I 1,(s)s 2 -  L

-Io (S) -310 (s)s

where Im = (1/m!) I (So). Similarly, we can find the matrix

equation for coefficients of model
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I(s) - (No+Nls+N2 s2 +N3s3+N4S4 )/(1+DlS+D 2 s2+D3S3+D4s 4 ) (9)

using information up to the second order derivatives from three

points.

III. Computing Frequency Derivatives in A Moment-Method

Model

A. The Basic Idea

Overall computation in obtaining frequency-derivative

information needed in Eq. (6) can be dramatically reduced from a

moment-method model.

On writing the moment-method equations, we have

N
I Zijlj = V! (10)

j=l

where Z, I, and V are the impedance matrix and the current and

voltage vectors. A solution for the current is

N
Ii = I YiVj (11)

j=1

where matrix Y is the inverse of Z. If we differentiate Eq. (10)
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with respect to frequency, we obtain

N
2 (ZijI' j+Z ijIj) = V'j (12)

j=l

from which results the differentiated current

N N
I' i = I Y j [V' j-1 Z' jkIk] . (13)

j=l k=l

It is seen that the differentiated current requires an

additional number of computations beyond those needed for the

current proportional to N2 rather than N 3 that would be

required to obtain another frequency sample.

In general, the n'th frequency derivative of the current

is given by

N N N
Ii(n) = j Y(vj(n)-L Cn,m( Zjk(i) 'k(n-I))]. (14)

j=1 m=l k=l

B. Implementation in the E-field solution of TM-scattering

Following the development in (2], we have the moment
equation

ZI=V (15)

where
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FZcc ZCD ZCM
Z LZDC ZDD ZDM] (16)

0 ZMD ZMM

I iC ID KD IT, (17)

and

V = V c CD 0 ]T (18)

are the equivalent impedance matrix and current and voltage

vectors, and they are all functions of frequency either through

ko (=w eo) or k(=wF

It is seen from Eq. (13) that in addition to the impedance

matrix, the differentiated impedance matrices are needed in

obtaining the differentiated currents. Basically, there are two

integrations that are numerically evaluated in forming the

impedance matrix. They are

A, = -k /4 H Ho2(kIT-Y 'I)dl', (19)

and

A 2  = -jk/4 [H1 k - I 'idl'. (20)

Similarly, the differentiated impedance matrices involve

derivatives of those integrals. By taking derivatives of

9



Eq. (19) and (20) with respect to k and using properties of

Hankel function

H (2 ) P (X) = -H, (2 ) (X), (21)

and

H, (2 )'(x) = H0 (2 ) (x)-H 1 (2 ) (x)/x, (22)

we obtain

dA,/dk = Al/k+(kj'/4){i?flI 
1H(2) (k If .' 1) dl', (23)

Alv= -Al/k2+A,2/k+(k1/4){i.?f' 2H0 (2) ()d1', (24)

A3)= 3A,/k 3 -3A 1 /k2 +2AJ'/k-

-(l4 Y1H(2)Odi', (25)

A4)= -9A,/k4+9A1 '/k 35A,"/k
2 +2A1( 3 )/k-

-(l If-f' 4 H0
2 ()di', (26)

A5)= 45A,/k5,45A'/k 4+24Al/k
3 9A3)/k+3A1()/k+

+(74 yf1H 1 (2 )(Odi', (27)
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A1
6 ~- 12Ajji4)/k2+3A1(3) /k+

+ (k e4){f' 16HO (2) Odi', (8

A7)- 1575A /k7-1575AIf/k6+810Alt/k 5 285A,( 3 ) /k 4 +

-( 4171(2) ()dl', (29)

Al = -11025Al/ks+11025A ' /k7-5625Al"/k 6 +

-22AE) /k+4A1 7/k

- 184 IIHO(2) Odi', (30)

dA 2 /dk - -jk/4 {HO (2) (kif...?'l)njd.(f...f)d1', (31)

A2 "' - A2 '+(jk/4){HI (2) ()(~.(-']99 l, (32)

A2()= -9A2 '/k4 +9A 2 '/k3-5A 2 (
3 ) /k2 +2A2 (4 )/k-

-(k/)f~ 2)()(id I- ]I-Y111l (5



A2 (6) - 45A 2 ,/k
5 45A 2 "/k 4 +24A 2 (3 )/k 3 9A2 (4 )/k2+

+3A 2  ( ) k+

+(jk/4){HI(2) () did (9-9')] 9-9' I5d1', (36)

A2 (7) - -225A /k 6 +225A2 ,/k5 -l17A 2 (3 )/k 4 +42A 2 (
4 )/k 3-

-12A 2 1
5 /k2 +3A 2 

6 )/k-
-(jk/4)[Ho 12 ) () [micl. ( - ' ]I - '16dl',r (37)

A2(8) = 1575A '/k7-1575A2,,/k 6+9lOA--(3)/kS-285A 2 (4) /k4+
+78A 2i

5 ) /k 3 -18A 2 1
6 ) /k2+4A 2'7) /k+

+(jk/4) [H(2) ()n (f-f') 9-f-' I7dl' (38)

Using Eq. (23)-(38), the differentiated impedance matrices take

the form

Z'cc Z'CD Z'CM 1
Z' =  Z'DC Z'DD Z'D M  (39)

0 Z'MDE Z' MM

r Z"CC Z"CD Z"CM 1

Z" = Z"DC Z"DD Z"DM (40)
0 Z"D 2 Z"M 2b,

etc., where E is dielectric constant of the dielectric body.

IV. Sample Numerical Results

Included in this section are sample results obtained from

a Fortran computer code which implements the theory presented

above. Specifically, the frequency derivative method (FD) is

12



compared with conventional point by point method (CV) in

obtaining the backscattering cross-section (BSCS) of various

structures over a frequency band.

Fig. (1) shows the BSCS of a conducting cylinder over a

frequency band from k=0.5ko to k=2ko, where k is wave constant,

and ko corresponds to the frequency at which frequency

derivative samples are taken. There are two curves for FD

method. One uses frequency derivative samples up to 4th order,

another up to 6th order. It is seen that the curve for 6th

order FD method is in excellent agreement with that of CV over

entire frequency band of interest, while the curve for 4th

order FD method starts deviating around k=l.7k o .

Fig. (2) shows the BSCS of a dielectric cylinder (E,=4) of

rectangular cross-section. The dimensions of the cylinder and

the number of sections approximating the surface in applying

moment method are given in the inset of the figure. The

observation is similar to that of Fig. (1).

Consider a combination of conductor and dielectric

cylinders as shown in Fig. (3). The curves of BSCS for FD method

are in fairly good agreement with that of CV method within the

neighborhood of ko (k=0.8ko to k=l.2ko). The 6th order FD

method gives better approximation than the 4th order FD within

frequency band from k=0.68k o to k=1.28k o .
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An interesting example is the BSCO for an empty circular

cylinder with an opening 00=50. The curve for CV method is

presented in [4). There are two resonances within frequency

band from ka=4 to ka=6, where a is the radius of the cylinder.

Fig. (4) shows the curves for FD method with frequency

derivative samples taken at ka=5 (koa=5) along with that for CV

method. The FD method of 4th, 6th, and 8th order are used. All

three curves of FD method locate the resonance around ka=5.16.

Notice that the higher the order of FD method, the better its

curve agrees with CV curve. In particular, the 4th order curve

misses the resonance at ka=5.55 completely, while the 6th order

curve gives some indication of resonance there, and the 8th

order curve locates the resonance. Next, we take frequency

derivative samples at ka=5.3 (koa=5.3). Then as shown in

Fig. (5), all three curve of FD are able to pick up the existing

two resonances. However, only 8th order FD curve is in

excellent agreement with the CV curve. Finally, several models

are used to cover a frequency band from ka=0.6 to ka=6.6.

Specifically, entire frequency section is divided into

subsections of equal size, and the solution in each section is

modeled by a rational function whose coefficients are

determined using 6th order FD method. For instance, frequency

derivative samples taken at ka=0.8 are used to cover the region

from ka=0.6 to ka=1.0, samples taken at ka=1.2 are used to

cover ka-1.0 to ka=1.4, and so on. The combined result of those

14



models are shown in Fig. (6) which gives the same locations of

resonance as given in Fig.8(b) of (4].

Fig. (7) shows the result using two points FD method for

the same structure used by Fig. (4)-(6). Informations used to

determine model coefficients are taken at ka - k0 a±8ka, where

koa - 5.0. Curves corresponding to different 8ka are shown. It

is shown that the curve varies with 8ka. As far as frequency

band from ka=4. to ka=6. is concerned, except the curve with

8ka=0.8, all three other curves indicate both resonances at

ka=5.16 and ka=5.55.

Fig. (8) shows the result using three points FD method. The

informations are taken at ka = koa, and ka = k0 a±ka, where k0 a

is again 5.0. Among curves corresponding to four different Ska,

the one with 6ka = 0.3 gives the best result. In addition to

existing resonances, other curves show signs of resonances that

are not existing.

Finally, Fig.(9) and Fig. (10) demonstrate the effect of

using models other than those given by Eq. (3) and (4). What

shown are results of 6th order FD method applied to previous

examples with different models. Models are different in orders

of polynomials in its numerator and denominator. In both

figures, NN is the order of numerator, and ND is the order of

denomenator. It is seen that curves corresponding to different

15



models are different, but they all agree with each other

locally around the point where informations are taken.

V. Summary and Conclusions

The problem considered here is that of computing the

electromagnetic parameters over a frequency band. Instead of

using a point by point approach, a rational function model is

used to approximate the parameter of interest as a function of

frequency. The model coefficients are computed using frequency

derivative information at one frequency within the band to

improve efficiency. Sample results are presented which

illustrate that the model based approach gives excellent result

over a limited frequency band, and is much more efficient than

conventional point by point approach.

We have the following conclusions:

First, around the point where frequency sample and its

derivatives are taken, there is always a frequency band in

which the FD method gives good approximation to the true value

of the frequency response. The higher the order of derivatives

used, the larger the size of this frequency band. When the same

order of derivatives is used, the size of this band still

varies from problem to problem. It depends on complexity of the
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function to be modeled, i.e. the difference between the order

of the assumed rational function model and the order of

rational function with complete fitting to the function.

Secondly, one point FD is preferred to multi-point FD for

the following reasons. One point FD is simpler to implement in

that it involves a matrix equation, Eq. (6), which can be

constructed easily, and there is no need to select separation

of points as required in multi-points FD; One point FD gives

better approximation locally, and separate models can be used

when a broad frequency band is of interest.

Finally, when the sum of orders in numerator and

denomenator polynomials is fixed, different combination of

orders generally yields different result. The selection of the

best model requires prior knowledge of the function to be

modeled. When such knowledge is not available, model of Eq. (4)

is recommended for its simplicity.
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